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Why Benchmarking? 

© Jim Gray, 2005 



What is the LDBC? 
 

Linked Data Benchmark Council = LDBC 

 Industry entity similar to TPC (www.tpc.org) 

 Focusing on graph and RDF store benchmarking 

 

Kick-started by an EU project 

 Runs from September 2012 – March 2015 

 9 project partners: 

 

 

 

 

 

 Will continue independently after the EU project 

http://www.tpc.org/


LDBC Benchmark Design 

Developed by so-called “task forces” 

 

 Requirements analysis and use case selection.  

◦ Technical User Community (TUC)  

 Benchmark specification.  

◦ data generator  

◦ query workload 

◦ metrics 

◦ reporting format 

 Benchmark implementation.  

◦ tools (query drivers, data generation, validation)   

◦ test evaluations  

 Auditing 

◦ auditing guide 

◦ auditor training 



LDBC: what systems? 

Benchmarks for: 

 RDF stores (SPARQL speaking) 

◦ Virtuoso, OWLIM, BigData, Allegrograph,… 

 Graph Database systems 

◦ Neo4j, DEX, InfiniteGraph, … 

 Graph Programming Frameworks 

◦ Giraph, Green Marl, Grappa, GraphLab,… 

 Relational Database systems 

 

 



LDBC: functionality 

Benchmarks for: 

 Transactional updates in (RDF) graphs 

 Business Intelligence queries over graphs 

 Graph Analytics (e.g. graph clustering) 

 Complex RDF workload, e.g. including 

reasoning, or for data integration 

 

Anything relevant for RDF and graph data 

management systems 

 



Roadmap for the Keynote 

Choke-point based benchmark design 

 

 What are Choke-points? 

◦ examples from good-old TPC-H 

◦  relational database benchmarking 

 

 A Graph benchmark Choke-Point, in-depth: 

◦ Structural Correlation in Graphs 

◦ and what we do about it in LDBC 

 

 Wrap up 

 



Database Benchmark Design  

Desirable properties: 

 Relevant.  

 Representative. 

 Understandable. 

 Economical.  

 Accepted. 

 Scalable. 

 Portable. 

 Fair. 

 Evolvable. 

 Public.  

 Jim Gray (1991) The Benchmark Handbook for Database  

  and Transaction Processing Systems 

 

 Dina Bitton, David J. DeWitt, Carolyn Turbyfill (1993) 

  Benchmarking Database Systems: A Systematic Approach  

 

Multiple TPCTC papers, e.g.: 

 Karl Huppler (2009) The Art of Building a Good Benchmark 

 



Stimulating Technical Progress 

 An aspect of ‘Relevant’ 

 The benchmark metric 

◦ depends on,  

◦ or, rewards: 

solving certain  

technical challenges 

 

“Choke Point” 

 

(not commonly solved by technology at benchmark 
design time)   



Benchmark Design with Choke Points 

Choke-Point = well-chosen difficulty in the workload 

 “difficulties in the workloads” 

◦ arise from Data (distribs)+Query+Workload 

◦ there may be different technical solutions to 

address the choke point 

 or, there may not yet exist optimizations (but should 

not be NP hard to do so) 

 the impact of the choke point may differ among 

systems 

 

 

 



Benchmark Design with Choke Points 

Choke-Point = well-chosen difficulty in the workload 

 “difficulties in the workloads” 

 “well-chosen” 

◦ the majority of actual systems do not handle 

the choke point very well 

◦ the choke point occurs or is likely to occur in 

actual or near-future workloads 



Example: TPC-H choke points 

 Even though it was designed without specific 

choke point analysis 

 TPC-H contained a lot of interesting challenges 

◦ many more than Star Schema Benchmark 

◦ considerably more than Xmark (XML DB benchmark) 

◦ not sure about TPC-DS (yet) 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



TPC-H choke point areas (1/3) 

 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



TPC-H choke point areas (2/3) 

 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



TPC-H choke point areas (3/3) 

 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



CP1.4 Dependent GroupBy Keys 
SELECT c_custkey,  c_name, c_acctbal,  

 sum(l_extendedprice * (1 - l_discount)) as revenue,  

n_name,  c_address,  c_phone, c_comment 

FROM  customer, orders,  lineitem,  nation 

WHERE  c_custkey = o_custkey and l_orderkey = o_orderkey 

 and o_orderdate >= date '[DATE]' 

 and o_orderdate < date '[DATE]' + interval '3' month 

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey 

GROUP BY  

 c_custkey, c_name,   c_acctbal,  c_phone,  n_name,  

 c_address, c_comment 

ORDER BY revenue DESC 

Q10 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



CP1.4 Dependent GroupBy Keys 
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FROM  customer, orders,  lineitem,  nation 

WHERE  c_custkey = o_custkey and l_orderkey = o_orderkey 
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 c_address, c_comment, n_name 

ORDER BY revenue DESC 
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TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 

CP1.4 Dependent GroupBy Keys 

 Functional dependencies: 

 c_custkey  c_name,   c_acctbal,  c_phone, 

c_address, c_comment, c_nationkey  n_name 

 Group-by hash table should exclude the 

colored attrs  less CPU+ mem footprint 

 in TPC-H, one can choose to declare 

primary and foreign keys (all or nothing) 

◦ this optimization requires declared keys 

◦ Key checking slows down RF (insert/delete) 

 

Exasol: 

“foreign key check” phase after load 



CP2.2 Sparse Joins 

 Foreign key (N:1) joins towards a relation 

with a selection condition  

◦ Most tuples will *not* find a match 

◦ Probing (index, hash) is the most expensive 

activity in TPC-H 

 

 Can we do better? 

◦ Bloom filters! 

TPCTC 2013:              www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf 
   “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark” 



CP2.2 Sparse Joins 

 Foreign key (N:1) joins towards a relation 

with a selection condition  

2G cycles        29M probes    cost would have been 14G cycles ~= 7 sec  

1.5G cycles    200M probes     85% eliminated 

probed: 200M tuples 

result: 8M tuples 

 1:25 join hit ratio 

Q21 

Vectorwise:  

TPC-H joins typically accelerate 4x 

Queries accelerate 2x  



CP5.2 Subquery Rewrite 
SELECT sum(l_extendedprice) / 7.0 as avg_yearly 

FROM lineitem,  part 

WHERE p_partkey = l_partkey  

 and p_brand = '[BRAND]' 

 and p_container = '[CONTAINER]'  

 and l_quantity <( SELECT 0.2 * avg(l_quantity) 

    FROM lineitem 

    WHERE l_partkey = p_partkey) 

This subquery can be extended with restrictions from 
the outer query. 

    SELECT 0.2 * avg(l_quantity) 

    FROM lineitem 

    WHERE l_partkey = p_partkey  

      and p_brand = '[BRAND]'  

      and p_container = '[CONTAINER]' 

+ CP5.3 Overlap between Outer- and Subquery. 

 

Q17 

Hyper: 

CP5.1+CP5.2+CP5.3 

results in 500x faster 

Q17 



Choke Points 

 Hidden challenges in a benchmark 

influence database system design, e.g. TPC-H 

 Functional Dependency Analysis in aggregation 

 Bloom Filters for sparse joins 

 Subquery predicate propagation 

 

 LDBC explicitly designs benchmarks 

looking at choke-point “coverage” 

◦ requires access to database kernel architects   



Roadmap for the Keynote 

Choke-point based benchmark design 

 

 What are Choke-points? 

◦ examples from good-old TPC-H 

 

 Graph benchmark Choke-Point, in-depth: 

◦ Structural Correlation in Graphs 

◦ and what we do about it in LDBC 

 

 Wrap up 

 



Data correlations between attributes 

SELECT personID from person 

WHERE firstName =           AND addressCountry = ‘Germany’ ‘Joachim’ 

SELECT personID from person 

WHERE firstName =           AND addressCountry = ‘Italy’ ‘Cesare’ 

 

 Query optimizers may underestimate or  overestimate the result size of 

conjunctive predicates  

 

Anti-Correlation 

Loew Prandelli Joachim Cesare Cesare Joachim 



SELECT COUNT(*) 

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = jn1.ID 

     paper pa2 JOIN conferences cn2 ON pa2.journal = jn2.ID 

WHERE pa1.author = pa2.author   AND 

  cn1.name = ‘VLDB’  AND  cn2.name =  

Data correlations between attributes 

‘SIGMOD’ 

 



SELECT COUNT(*) 

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = cn1.ID 

     paper pa2 JOIN conferences cn2 ON pa2.journal = cn2.ID 

WHERE pa1.author = pa2.author   AND 

  cn1.name = ‘VLDB’  AND  cn2.name =  

Data correlations over joins 

‘Nature’ 

 

‘SIGMOD’ 

 

 A challenge to the optimizers to adjust estimated join hit ratio  

    pa1.author = pa2.author  

    depending on other predicates  

 Correlated predicates are still a frontier area in database research 

 



LDBC Social Network Benchmark (SNB) 
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Photo 
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like 



 What makes graphs interesting are the connectivity patterns 

• who is connected to who? 

   structure typically depends on the (values) attributes of nodes 

 Structural Correlation ( choke point) 

• amount of common friends 

• shortest path between two persons 

search complexity in a social network varies wildly between 

• two random persons 

• e.g. colleagues at the same company 

 No existing graph benchmark specifically tests for the effects of correlations 

 Synthetic graphs used for benchmarking do not have structural correlations 

Handling Correlation:  a choke point for Graph DBs 

Need a data generator generating synthetic graph 

with data/structure correlations  

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



 How do data generators generate values?      E.g.  FirstName 

Generating Correlated Property Values 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



 How do data generators generate values?      E.g.  FirstName 

 

 Value Dictionary D()  

• a fixed set of values, e.g., 

  {“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”, .. }  

 

 Probability density function F()  

• steers how the generator chooses values 

 cumulative distribution over dictionary entries determines which value to pick 

• could be anything: uniform, binomial, geometric, etc… 

 geometric (discrete exponential) seems to explain many natural phenomena  

Generating Property Values 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



 How do data generators generate values? E.g.  FirstName 

 

 Value Dictionary D()  

  

 Probability density function F()  

 

 Ranking Function R() 

• Gives each value a unique rank between one and |D| 

determines which value gets which probability 

• Depends on some parameters (parameterized function) 

 value frequency distribution becomes correlated by the parameters or R()  

 

 

 

Generating Correlated Property Values 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 

 How do data generators generate values? E.g.  FirstName 

 

 Value Dictionary D()  

{“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”,“Leon”,“Orri

  

 Probability density function F() 

    geometric distribution  

 

 Ranking Function R(gender,country,birthyear) 

• gender, country, birthyear  correlation parameters 

 

 

 

Generating Correlated Property Values 

How to implement R()? 
 

We need a table storing  

 

|Gender| X |Country| X  |BirthYear| X |D| 

Solution: 
- Just store the rank of the top-N values, not  all|D| 

- Assign the rank of the other dictionary values randomly 
 

limited #combinations 

Potentially 

Many!  



Compact Correlated Property Value Generation 

Using geometric distribution for function F() 



 Main source of dictionary values from DBpedia (http://dbpedia.org) 

 

 Various realistic property value correlations () 

e.g.,  

 (person.location,person.gender,person.birthDay)   person.firstName 

 person.location   person.lastName 

 person.location  person.university 

person.createdDate   person.photoAlbum.createdDate 

…. 

 

Correlated Value Property in LDBC SNB 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 

http://dbpedia.org/
http://dbpedia.org/


 

  

Correlated Edge Generation 
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Simple approach 
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Danger: this is very expensive to compute on a large graph! 

(quadratic, random access) 

• Compute similarity of two nodes 

based on their (correlated) properties. 

• Use a probability density function 

wrt to this similarity for connecting 

nodes 
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Our observation 
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Probability that two nodes are connected is skewed w.r.t the 

similarity between the nodes (due to probability distr.) 
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Window 

Trick:  disregard nodes with too large similarity distance 

(only connect nodes in a similarity window) 



Correlation Dimensions 

 

 

 

 Similar metric  

 Sort nodes on similarity (similar nodes are brought near each other) 

 

 

 

 

 

 Probability function 

  Pick edge between two nodes based on their ranked distance  

 (e.g. geometric distribution, again) 

Similarity metric +  

Probability function 

P1 

London 

P5 

London 

P3 

Eton 

P2 

Eton 

P4 

Cambridge 

<Ranking along the “Having study together” dimension> 

   we use space filling curves (e.g. Z-order) to get a linear dimension 

 

 

 

 

 

 



 Sort nodes using MapReduce on similarity metric  

 Reduce function keeps a window of nodes to generate edges 

• Keep low memory usage (sliding window approach) 

 

 Slide the window for multiple passes, each pass corresponds to one correlation 

dimension (multiple MapReduce jobs) 

• for each node we choose degree per pass (also using a prob. function) 

 steers how many edges are picked in the window for that node 

Generate edges along correlation dimensions 
 

 

 

 

 

 

W 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



 Having studied together  

  

 Having common interests (hobbies) 

 

 Random dimension 

• motivation: not all friendships are explainable (…) 

 

 

(of course, these two correlation dimensions are still a gross simplification of reality

 but this provides some interesting material for benchmark queries) 

Correlation Dimensions in LDBC SNB 

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 



 Social graph characteristics 

• Output graph has similar characteristics as observed in real social network 

(i.e., “small-world network” characteristics) 

  - Power-law social degree distribution 

  - Low average path-length 

  - High clustering coefficient 

 

 

 Scalability 

• Generates up to 1.2 TB of data (1.2 million users) in half an hour 

  - Runs on a cluster of 16 nodes  

   (part of the SciLens cluster, www.scilens.org) 

• Scales out linearly 

Evaluation (… see the TPCTC 2012 paper)  

TPCTC 2012:              www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf 
   “S3G2: A Scalable Structure-correlated Social Graph Generator” 

http://www.scilens.org/


 correlation between values (“properties”) and connection pattern in graphs 

affects many real-world data management tasks 

use as a choke point in the Social Network Benchmark 

 

 generating huge correlated graphs is hard! 

MapReduce algorithm that approximates correlation probabilities with 

windowed-approach 

 

See: for more info  

• https://github.com/ldbc 

• SNB task-force wiki http://www.ldbc.eu:8090/display/TUC 

Summary 

https://github.com/ldbc
https://github.com/ldbc
http://www.ldbc.eu:8090/display/TUC


Roadmap for the Keynote 

Choke-point based benchmark design 

 

 What are Choke-points? 

◦ examples from good-old TPC-H 

 

 Graph Choke-Point In depth 

◦ Structural Correlation in Graphs 

◦ And what we do about it in LDBC 

 

 Wrap up 

 



LDBC Benchmark Status 

 Social Network Benchmark 

◦ Interactive Workload 
 Lookup queries + updates 

 Navigation between friends and posts 

Graph DB, RDF DB, Relational DB 

◦ Business Intelligence Workload 

 Heavy Joins, Group-By + navigation! 

 Graph DB, RDF DB, Relational DB 

◦ Graph Analytics 

 Graph Diameter, Graph Clustering, etc. 

 Graph Programming Frageworks, Graph DB (RDF DB?, 
Relational DB?) 



LDBC Benchmark Status 

 Social Network Benchmark 

 Semantic Publishing Benchmark 

◦ BBC use case (BBC data + queries) 

 Continuous updates 

 Aggregation queries 

 Light-weight RDF reasoning 



LDBC Next Steps 

 Benchmark Interim Reports 

◦ November 2013 

◦ SNB and Semantic Publishing 

 

 Meet LDBC @ GraphConnect 

◦ 3rd Techical User Community (TUC) meeting 

◦ London, November 19, 2013 

 



Conclusion 

 LDBC: a new graph/RDF benchmarking 

initiative 

◦ EU initatiated, Industry supported 

◦ benchmarks under development (SNB, SPB) 

 more to follow 

 Choke-point based benchmark 

development 

◦ Graph Correlation  



LDBC 

thank you very much. 

Questions? 


