
LDBC

Industry-strength benchmarks for

Graph and RDF

Data Management

Peter Boncz

 make competing

products

comparable

 accelerate

progress, make

technology

viable

Why Benchmarking?

© Jim Gray, 2005

What is the LDBC?

Linked Data Benchmark Council = LDBC

 Industry entity similar to TPC (www.tpc.org)

 Focusing on graph and RDF store benchmarking

Kick-started by an EU project

 Runs from September 2012 – March 2015

 9 project partners:

 Will continue independently after the EU project

http://www.tpc.org/

LDBC Benchmark Design

Developed by so-called “task forces”

 Requirements analysis and use case selection.

◦ Technical User Community (TUC)

 Benchmark specification.

◦ data generator

◦ query workload

◦ metrics

◦ reporting format

 Benchmark implementation.

◦ tools (query drivers, data generation, validation)

◦ test evaluations

 Auditing

◦ auditing guide

◦ auditor training

LDBC: what systems?

Benchmarks for:

 RDF stores (SPARQL speaking)

◦ Virtuoso, OWLIM, BigData, Allegrograph,…

 Graph Database systems

◦ Neo4j, DEX, InfiniteGraph, …

 Graph Programming Frameworks

◦ Giraph, Green Marl, Grappa, GraphLab,…

 Relational Database systems

LDBC: functionality

Benchmarks for:

 Transactional updates in (RDF) graphs

 Business Intelligence queries over graphs

 Graph Analytics (e.g. graph clustering)

 Complex RDF workload, e.g. including

reasoning, or for data integration

Anything relevant for RDF and graph data

management systems

Roadmap for the Keynote

Choke-point based benchmark design

 What are Choke-points?

◦ examples from good-old TPC-H

◦ relational database benchmarking

 A Graph benchmark Choke-Point, in-depth:

◦ Structural Correlation in Graphs

◦ and what we do about it in LDBC

 Wrap up

Database Benchmark Design

Desirable properties:

 Relevant.

 Representative.

 Understandable.

 Economical.

 Accepted.

 Scalable.

 Portable.

 Fair.

 Evolvable.

 Public.

 Jim Gray (1991) The Benchmark Handbook for Database

 and Transaction Processing Systems

 Dina Bitton, David J. DeWitt, Carolyn Turbyfill (1993)

 Benchmarking Database Systems: A Systematic Approach

Multiple TPCTC papers, e.g.:

 Karl Huppler (2009) The Art of Building a Good Benchmark

Stimulating Technical Progress

 An aspect of ‘Relevant’

 The benchmark metric

◦ depends on,

◦ or, rewards:

solving certain

technical challenges

“Choke Point”

(not commonly solved by technology at benchmark
design time)

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

 “difficulties in the workloads”

◦ arise from Data (distribs)+Query+Workload

◦ there may be different technical solutions to

address the choke point

 or, there may not yet exist optimizations (but should

not be NP hard to do so)

 the impact of the choke point may differ among

systems

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

 “difficulties in the workloads”

 “well-chosen”

◦ the majority of actual systems do not handle

the choke point very well

◦ the choke point occurs or is likely to occur in

actual or near-future workloads

Example: TPC-H choke points

 Even though it was designed without specific

choke point analysis

 TPC-H contained a lot of interesting challenges

◦ many more than Star Schema Benchmark

◦ considerably more than Xmark (XML DB benchmark)

◦ not sure about TPC-DS (yet)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPC-H choke point areas (1/3)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPC-H choke point areas (2/3)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPC-H choke point areas (3/3)

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,

 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey and l_orderkey = o_orderkey

 and o_orderdate >= date '[DATE]'

 and o_orderdate < date '[DATE]' + interval '3' month

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey

GROUP BY

 c_custkey, c_name, c_acctbal, c_phone, n_name,

 c_address, c_comment

ORDER BY revenue DESC

Q10

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,

 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey and l_orderkey = o_orderkey

 and o_orderdate >= date '[DATE]'

 and o_orderdate < date '[DATE]' + interval '3' month

 and l_returnflag = 'R‘ and c_nationkey = n_nationkey

GROUP BY

 c_custkey, c_name, c_acctbal, c_phone,

 c_address, c_comment, n_name

ORDER BY revenue DESC

Q10

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP1.4 Dependent GroupBy Keys

 Functional dependencies:

 c_custkey c_name, c_acctbal, c_phone,

c_address, c_comment, c_nationkey n_name

 Group-by hash table should exclude the

colored attrs less CPU+ mem footprint

 in TPC-H, one can choose to declare

primary and foreign keys (all or nothing)

◦ this optimization requires declared keys

◦ Key checking slows down RF (insert/delete)

Exasol:

“foreign key check” phase after load

CP2.2 Sparse Joins

 Foreign key (N:1) joins towards a relation

with a selection condition

◦ Most tuples will *not* find a match

◦ Probing (index, hash) is the most expensive

activity in TPC-H

 Can we do better?

◦ Bloom filters!

TPCTC 2013: www.cwi.nl/~boncz/tpctc2013_boncz_neumann_erling.pdf
 “TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark”

CP2.2 Sparse Joins

 Foreign key (N:1) joins towards a relation

with a selection condition

2G cycles 29M probes cost would have been 14G cycles ~= 7 sec

1.5G cycles 200M probes 85% eliminated

probed: 200M tuples

result: 8M tuples

 1:25 join hit ratio

Q21

Vectorwise:

TPC-H joins typically accelerate 4x

Queries accelerate 2x

CP5.2 Subquery Rewrite
SELECT sum(l_extendedprice) / 7.0 as avg_yearly

FROM lineitem, part

WHERE p_partkey = l_partkey

 and p_brand = '[BRAND]'

 and p_container = '[CONTAINER]'

 and l_quantity <(SELECT 0.2 * avg(l_quantity)

 FROM lineitem

 WHERE l_partkey = p_partkey)

This subquery can be extended with restrictions from
the outer query.

 SELECT 0.2 * avg(l_quantity)

 FROM lineitem

 WHERE l_partkey = p_partkey

 and p_brand = '[BRAND]'

 and p_container = '[CONTAINER]'

+ CP5.3 Overlap between Outer- and Subquery.

Q17

Hyper:

CP5.1+CP5.2+CP5.3

results in 500x faster

Q17

Choke Points

 Hidden challenges in a benchmark

influence database system design, e.g. TPC-H

 Functional Dependency Analysis in aggregation

 Bloom Filters for sparse joins

 Subquery predicate propagation

 LDBC explicitly designs benchmarks

looking at choke-point “coverage”

◦ requires access to database kernel architects

Roadmap for the Keynote

Choke-point based benchmark design

 What are Choke-points?

◦ examples from good-old TPC-H

 Graph benchmark Choke-Point, in-depth:

◦ Structural Correlation in Graphs

◦ and what we do about it in LDBC

 Wrap up

Data correlations between attributes

SELECT personID from person

WHERE firstName = AND addressCountry = ‘Germany’ ‘Joachim’

SELECT personID from person

WHERE firstName = AND addressCountry = ‘Italy’ ‘Cesare’

 Query optimizers may underestimate or overestimate the result size of

conjunctive predicates

Anti-Correlation

Loew Prandelli Joachim Cesare Cesare Joachim

SELECT COUNT(*)

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = jn1.ID

 paper pa2 JOIN conferences cn2 ON pa2.journal = jn2.ID

WHERE pa1.author = pa2.author AND

 cn1.name = ‘VLDB’ AND cn2.name =

Data correlations between attributes

‘SIGMOD’

SELECT COUNT(*)

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = cn1.ID

 paper pa2 JOIN conferences cn2 ON pa2.journal = cn2.ID

WHERE pa1.author = pa2.author AND

 cn1.name = ‘VLDB’ AND cn2.name =

Data correlations over joins

‘Nature’

‘SIGMOD’

 A challenge to the optimizers to adjust estimated join hit ratio

 pa1.author = pa2.author

 depending on other predicates

 Correlated predicates are still a frontier area in database research

LDBC Social Network Benchmark (SNB)

User

User

User

User

Photo

InRelationShip
User

“Yamaku

”

“EPFL”

“Switzerland”

like

 What makes graphs interesting are the connectivity patterns

• who is connected to who?

 structure typically depends on the (values) attributes of nodes

 Structural Correlation (choke point)

• amount of common friends

• shortest path between two persons

search complexity in a social network varies wildly between

• two random persons

• e.g. colleagues at the same company

 No existing graph benchmark specifically tests for the effects of correlations

 Synthetic graphs used for benchmarking do not have structural correlations

Handling Correlation: a choke point for Graph DBs

Need a data generator generating synthetic graph

with data/structure correlations

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 How do data generators generate values? E.g. FirstName

Generating Correlated Property Values

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()

• a fixed set of values, e.g.,

 {“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”, .. }

 Probability density function F()

• steers how the generator chooses values

 cumulative distribution over dictionary entries determines which value to pick

• could be anything: uniform, binomial, geometric, etc…

 geometric (discrete exponential) seems to explain many natural phenomena

Generating Property Values

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()

 Probability density function F()

 Ranking Function R()

• Gives each value a unique rank between one and |D|

determines which value gets which probability

• Depends on some parameters (parameterized function)

 value frequency distribution becomes correlated by the parameters or R()

Generating Correlated Property Values

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()

{“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”,“Leon”,“Orri

 Probability density function F()

 geometric distribution

 Ranking Function R(gender,country,birthyear)

• gender, country, birthyear correlation parameters

Generating Correlated Property Values

How to implement R()?

We need a table storing

|Gender| X |Country| X |BirthYear| X |D|

Solution:
- Just store the rank of the top-N values, not all|D|

- Assign the rank of the other dictionary values randomly

limited #combinations

Potentially

Many!

Compact Correlated Property Value Generation

Using geometric distribution for function F()

 Main source of dictionary values from DBpedia (http://dbpedia.org)

 Various realistic property value correlations ()

e.g.,

 (person.location,person.gender,person.birthDay) person.firstName

 person.location person.lastName

 person.location person.university

person.createdDate person.photoAlbum.createdDate

….

Correlated Value Property in LDBC SNB

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

http://dbpedia.org/
http://dbpedia.org/

Correlated Edge Generation

P4

P5

Student

“Anna”

“University of

Leipzig”

“Germany”

“1990”

P1

“University

of Leipzig”

“Laura”

“1990”

<Britney

Spears>

<Britney

Spears>

P3

“University

of Leipzig”
“1990”

P2

“University of

Amsterdam”

“Netherlands”

Correlated Edge Generation

P4

P5

Student

“Anna”

“University of

Leipzig”

“Germany”

“1990”

P1

“University

of Leipzig”

“Laura”

“1990”

<Britney

Spears>

<Britney

Spears>

P3

“University

of Leipzig”
“1990”

P2

“University of

Amsterdam”

“Netherlands”

Correlated Edge Generation

P4

P5

Student

“Anna”

“University of

Leipzig”

“Germany”

“1990”

P1

“University

of Leipzig”

“Laura”

“1990”

<Britney

Spears>

<Britney

Spears>

P3

“University

of Leipzig”
“1990”

P2

“University of

Amsterdam”

“Netherlands”

Simple approach

P

4

P

5

Student

“Anna”

“University of

Leipzig”

“Germany

”

“1990”

P

1

“University

of Leipzig”

“Laura

”

“1990

”

<Britney

Spears>

<Britney

Spears>

P

3

“Universit

y of

Leipzig” “1990

”

P

2

“University of

Amsterdam”
“Netherland

s”

Danger: this is very expensive to compute on a large graph!

(quadratic, random access)

• Compute similarity of two nodes

based on their (correlated) properties.

• Use a probability density function

wrt to this similarity for connecting

nodes

connection

probability

highly similar less similar

Our observation

P

4

P

5

Student

“Anna”

“University of

Leipzig”

“Germany

”

“1990”

P

1

“University

of Leipzig”

“Laura

”

“1990

”

<Britney

Spears>

<Britney

Spears>

P

3

“Universit

y of

Leipzig” “1990

”

P

2

“University of

Amsterdam”
“Netherland

s”

Probability that two nodes are connected is skewed w.r.t the

similarity between the nodes (due to probability distr.)

connection

probability

highly similar less similar

Window

Trick: disregard nodes with too large similarity distance

(only connect nodes in a similarity window)

Correlation Dimensions

 Similar metric

 Sort nodes on similarity (similar nodes are brought near each other)

 Probability function

 Pick edge between two nodes based on their ranked distance

 (e.g. geometric distribution, again)

Similarity metric +

Probability function

P1

London

P5

London

P3

Eton

P2

Eton

P4

Cambridge

<Ranking along the “Having study together” dimension>

 we use space filling curves (e.g. Z-order) to get a linear dimension

 Sort nodes using MapReduce on similarity metric

 Reduce function keeps a window of nodes to generate edges

• Keep low memory usage (sliding window approach)

 Slide the window for multiple passes, each pass corresponds to one correlation

dimension (multiple MapReduce jobs)

• for each node we choose degree per pass (also using a prob. function)

 steers how many edges are picked in the window for that node

Generate edges along correlation dimensions

W

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 Having studied together

 Having common interests (hobbies)

 Random dimension

• motivation: not all friendships are explainable (…)

(of course, these two correlation dimensions are still a gross simplification of reality

 but this provides some interesting material for benchmark queries)

Correlation Dimensions in LDBC SNB

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

 Social graph characteristics

• Output graph has similar characteristics as observed in real social network

(i.e., “small-world network” characteristics)

 - Power-law social degree distribution

 - Low average path-length

 - High clustering coefficient

 Scalability

• Generates up to 1.2 TB of data (1.2 million users) in half an hour

 - Runs on a cluster of 16 nodes

 (part of the SciLens cluster, www.scilens.org)

• Scales out linearly

Evaluation (… see the TPCTC 2012 paper)

TPCTC 2012: www.cwi.nl/~boncz/tpctc2012_pham_boncz_erling.pdf
 “S3G2: A Scalable Structure-correlated Social Graph Generator”

http://www.scilens.org/

 correlation between values (“properties”) and connection pattern in graphs

affects many real-world data management tasks

use as a choke point in the Social Network Benchmark

 generating huge correlated graphs is hard!

MapReduce algorithm that approximates correlation probabilities with

windowed-approach

See: for more info

• https://github.com/ldbc

• SNB task-force wiki http://www.ldbc.eu:8090/display/TUC

Summary

https://github.com/ldbc
https://github.com/ldbc
http://www.ldbc.eu:8090/display/TUC

Roadmap for the Keynote

Choke-point based benchmark design

 What are Choke-points?

◦ examples from good-old TPC-H

 Graph Choke-Point In depth

◦ Structural Correlation in Graphs

◦ And what we do about it in LDBC

 Wrap up

LDBC Benchmark Status

 Social Network Benchmark

◦ Interactive Workload
 Lookup queries + updates

 Navigation between friends and posts

Graph DB, RDF DB, Relational DB

◦ Business Intelligence Workload

 Heavy Joins, Group-By + navigation!

 Graph DB, RDF DB, Relational DB

◦ Graph Analytics

 Graph Diameter, Graph Clustering, etc.

 Graph Programming Frageworks, Graph DB (RDF DB?,
Relational DB?)

LDBC Benchmark Status

 Social Network Benchmark

 Semantic Publishing Benchmark

◦ BBC use case (BBC data + queries)

 Continuous updates

 Aggregation queries

 Light-weight RDF reasoning

LDBC Next Steps

 Benchmark Interim Reports

◦ November 2013

◦ SNB and Semantic Publishing

 Meet LDBC @ GraphConnect

◦ 3rd Techical User Community (TUC) meeting

◦ London, November 19, 2013

Conclusion

 LDBC: a new graph/RDF benchmarking

initiative

◦ EU initatiated, Industry supported

◦ benchmarks under development (SNB, SPB)

 more to follow

 Choke-point based benchmark

development

◦ Graph Correlation

LDBC

thank you very much.

Questions?

